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A new degenerate-kernel approach is developed for the numerical solution of Fredholm 
integral equations of the second kind, y = f + hKy. An essential feature is that the 
rank-N approximate kernel is constructed to be exact when it operates in a certain 
N-dimensional subspace, the subspace being chosen for its suitability for approximating 
y. The simplest version of the method is equivalent to a single iteration of the method of 
moments, or Galerkin method, and is very similar to the method of moments in its 
computational requirements, but nevertheless is not at all similar in its performance. 
Numerical examples, including one with a logarithmic singularity in the kernel, show 
that the simplest version gives consistently better results than the method of moments, 
the errors typically being smaller by one or more factors of ten. A somewhat more 
elaborate version of the method is found to give results that are at least marginally 
better again. 

1. INTRoDuC~~N 

In this paper we develop a new degenerate-kernel approach to the numerical 
solution of Fredholm integral equations of the second kind, 

or 
Y =f+hKy, (2) 

where y and f are real- or complex-valued functions in L2(a, b), and K is a square- 
integrable kernel [ 11. 

Since equations of this form arise in many areas, the present discussion is not 
tied to a specific physical context. The methods were actually conceived, however, 
in relation to nuclear few-body collision problems. (In that area there is a particular 
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SOLUTION OF INTEGRAL EQUATIONS 93 

interest in degenerate-kernel methods, because of the great simplifications which 
they often allow.) Specific applications and extensions to few-body collision 
problems will be described separately [2, 31. 

The vital step in any degenerate-kernel method [4, 51 for Eq. (2) is the construc- 
tion of the degenerate kernel KN , after which the approximate equation 

YN =f + ~KNYN 

can easily be solved by reduction to algebraic linear equations. The distinctive 
feature of the present approach is that we try to make KN a good approximation 
in the context in which K actually occurs in the integral equation, i.e., as an operator 
on the solution y. The standard methods [4, 51, in contrast, pay no special attention 
to the solution, but rather attempt to find an approximate kernel that is a good 
approximation over the whole space. 

The way in which KNy is constrained to be a good approximation to Ky is by 
constructing KN to have the property 

KNu, = KU,, , n = I,..., N, (3) 

where the {u,} are a linearly independent set of functions, chosen for their suitability 
as a basis set for approximating y. Then KN has exactly the same effect as K when 
it operates on any function in the subspace UN spanned by u1 ,..., UN ; and if this 
subspace contains a good approximation to y, then KN y will be a good approxi- 
mation to Ky. (To carry it to an extreme, if we are clever enough to choose the 
{u,} so that y is actually contained in UN , then KNy obviously becomes exact.) 

The benefit derived from Eq. (3) can also be expressed in another way: Let us 
denote by PN the orthogonal projection operator into the subspace UN spanned 
by % ,--., uN , so that PNy is the part of the exact solution that lies in this subspace. 
Then it follows from Eq. (3) that 

and hence that 

KNPN = KP, , 

W - KN)Y = W - KN)(Y - pNY)* (4) 

A conventional error analysis for degenerate-kernel methods makes use of the 
inequality 

IIW - KN)Y 11 < 11 K - KN 11 11 Y 11 

(where I] . II denotes any suitable vector norm and consistent operator norm), 
whereas Eq. (4) leads to the much stronger inequality 

IlW - KN)Y 11 G II K - KN 11 11 Y - PNY Il. 
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(In particular, if the set {u,} is complete and the norm is the L2 norm, then 
11 y - PN y 11 converges to zero as N -+ cc [l], whereas the corresponding factor 
in the first inequality is a constant.) A proper error analysis is deferred, however, 
to a later paper, the emphasis for the present being rather on establishing that the 
methods are useful and reliable in practice. 

The explicit expression for KN is given in the following section. It will be seen 
that the expression is only partly determined by Eq. (3), so that the approach 
yields a family of methods, rather than a single one. Two particular methods are 
discussed in detail in Sections 3 and 4, and then investigated numerically in 
Section 6. The simplest of the methods (method 1) is very similar in its com- 
putational requirements to the method of moments [4, 51, or Galerkin method, 
in which an approximate solution is sought in the form 

but the performance will be seen to be very different indeed. An interesting formal 
relation exists between method 1 and the method of moments, namely that 
method 1 is formally equivalent to a single iteration of the method of moments. 
It has been noticed previously [6] that the accuracy of Galerkin methods is often 
improved by such an iteration, 

Readers interested only in computational aspects will need to read only the 
next section, where the present methods are defined, and Section 6, where numerical 
examples are discussed. 

2. DEFINITION OF METHODS 

As explained above, we introduce a linearly independent set of functions 
u1 ,..., u, in L2(a, b), these to be chosen for their suitability as a basis set for 
approximating y. We also need a second linearly independent set vr ,... , vN in 
L2(a, b), which will be specified later. 

We define the approximate kernel of rank N to be 

where the coefficients D, are obtained by inverting an N x N matrix, 

(D-l),,,n = s b G) u-(s) ds 
a 

= (VW3 , 4, m, n = l,..., N, 

(5) 

(6) 
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and where 

Ku,(t) = j-” K(t, s) un(s) ds. 
a 

The requirement that the matrix (6) be nonsingular imposes a constraint on the 
choice of the {un}. A convenient inner product has been introduced in Eq. (6). 

It is easily verified that the K,,, so constructed satisfies the desired condition, 

KNu, = Ku,, n = l,..., N, 

whatever the choice of the {a,}. However, the choice of the {urn} is not unimportant, 
as we shall see later. 

The solution of the integral equation (2) is then approximated by the solution 
of the approximate equation 

YN =f +~KNYN- 

Since this equation has a degenerate kernel, it can easily be solved [4] to give 

YN=f+A ; a,,&,, (8) 
W-1 

where the coefficients a, satisfy the N linear equations 

un> - A(% , %Jl a, = (urn , f>, m = l,..., N. (9) 

There remains the question of the choice of the {v,]. In this paper we consider 
in detail only the two choices that seem to us the most attractive. The first is the 
choice (method 1) 

%z = %n 9 m = l,..., N, (10) 

which has the merit of simplicity, and the second is the choice (method 2) 

%(d = s” urn(t) K(t, s) & m = l,..., N, 
a 

which we shall argue is preferable on theoretical grounds, and which turns out 
in Section 6 to give the best results. 

Method 1, and the interesting relation it has to the method of moments, are 
discussed in the following section, and method 2 is discussed in Section 4. For 
the purpose of applying the methods, however, the only equations needed are 
those given above, in particular Eqs. (8)-(11). Method 1 requires the evaluation 

581/18/1-7 
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of the integrals in (7) and then the inner products in (9). Method 2 is somewhat 
more difficult, in that it also requires the evaluation of the integrals in (11). 
However, if K is symmetric these are the same as the integrals KU, already 
evaluated for use in (9), so that the additional difficulty in this case lies only in 
evaluating what are likely to be more difficult inner products in (9). 

3. DISCUSSION OF METHOD 1 

Method 1 uses the simple choice 

%I = urn 3 m = l,..., N, 

for the set {v,,J. This choice automatically makes the matrix in (6) nonsingular, 
because its determinant is a Gram determinant [7, p. 591. 

This method has an interesting relation with the method of moments [7, 51, 
or Gale&in method. In that method one seeks an approximate solution of the 
form 

N 

YY” = c a,u, , 
n4 

(12) 

and obtains the coefficients a, by requiring that the approximate solution should 
satisfy the N equations 

(urn 9 Iv:“” - f - hKyFrn]) = 0, m = l,..., N, (13) 

i.e., by requiring that certain “moments” of the equation be satisfied. It is easy 
to see that the resulting linear equations are identical to (9), with v, equal to u,,, , 
hence the coefficients a, in the moments solution (12) are exactly the same as 
for method 1. However, the approximate solutions yEom and yN are not the same, 
because the forms of the solutions in the two cases are different. In fact, from (8) 
and (12) the two approximate solutions are seen to be related by 

YN = f + =Yym, (14) 

i.e. they are related by a single iteration of the integral equation. 
To allow us to better understand the relation between method 1 and the method 

of moments, it is useful to introduce PN , the orthogonal projection operator 
onto the subspace UN spanned by u, ,..., UN . From Eq. (13), the moments solution 
satisfies 

YTrn = PNf + ~NKY~?~, (15) 
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where we have used 
PhryYrn = yY”. 

Then on comparing (14) and (15) we immediately conclude 

PNyN = yF”. 

Thus, if the exact solution y is decomposed by y = PN y + (1 - PN) y into a 
part contained in U, and another part orthogonal to it, we see that method 1 
and the method of moments give exactly the same approximation for PN y, the part 
of y contained in U,. . 

On the other hand for (1 - PN) y, the part of y orthogonal to U, , the method 
of moments obviously predicts zero, whereas method 1 generally gives a nonzero 
prediction. According to (14), we can reasonably expect this prediction to be 
a useful one (i.e. to be a better prediction than zero), if the moments solution is 
a good approximation to y, because the right-hand side is then a good approxi- 
mation to the right-hand side of the original equation. (If the moments solution 
is not a good approximation toy then neither method can be expected to be useful. 
The remarks in this paragraph are of course only qualitative. A full error analysis 
will be given in a future paper.) 

It is well known that the method of moments can be expressed as a degenerate- 
kernel method, indeed (15) is already an integral equation with a degenerate 
kernel, namely P,K. On the other hand, it is easy to see that the degenerate 
kernel (5) for method 1 is just KN = KP, . The formal difference may seem 
slight, but as we shall see from the numerical results in Section 6, it can be of 
great importance in practice. Before concluding this part, it is worth mentioning 
the alternative version [4, p. 1511 of the method of moments that begins with 

YFrn =f+ 5 bnun, 

rather than (12). From our point of view, the important observation here is the 
easily proved result that the two methods of moments become identical if f is a 
linear combination of u1 ,..., u, , i.e. if PNf = f. This is the case for both of the 
numerical examples considered in Section 6. 

4. DISCUSSION OF METHOD 2 

For this case the {v,} are defined by Eq. (1 I), or concisely 

V m = K*u, , m = l,..., N, (16) 
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-- 
where K* is the adjoint of K, K*(s, t) = K(t, s). For method 2 to be applicable 
it is necessary that the set {K*u~} be linearly independent, and that the matrix 
in (6) be nonsingular. For the latter, it is for example sufficient [7, p. 571, but 
certainly not necessary, that K be symmetric and positive definite. 

With the choice (16) it is easy to verify that KN* satisfies 

KN*u,,, = K*u,,, , m = l,..., N, (17) 

so that not only KN but also I&* is an exact operator in the subspace UN spanned 
by u, ,..., u, . 

The property (17) can also be expressed in another way: With the aid of the 
projection operator PN , Eq. (17) is equivalent to 

PNKN = P,K, 08) 

whereas Eq. (3), which of course also holds, is equivalent to 

KNPN = KPN . (19) 

The first of these properties is shared with the method of moments, and the 
second is shared with method 1, so that in a sense method 2 has the advantages 
of both of the others. 

In the introduction we stated that our fundamental aim in constructing KN 
is to make KN a good approximation to K in the context in which K actually 
occurs in the integral equation, i.e. as an operator on y. Taken on its own, the 
property (19) (which is common to any kernel of the form (5)) leads to an expression 
for Ky - KNy, 

KY - K,Y = W - &)(Y - PNY), 

which we certainly expect to be small if the basis set {u,} is well chosen, since 
a good basis set implies that P,y N y. Method 2 goes further than this, since the 
property (18) also gives an additional constraint on Ky - KN y, namely 

PN@Y -KNY) = 0, P> 

i.e., the projection of Ky - K,,,y into the subspace U,., vanishes. This is a very 
useful constraint in the context of the integral equation, since Ky itself will 
generally lie almost completely within UN , if the basis set is well chosen. (This is 
because Ky is proportional to y -J If the basis set is well chosen for approxi- 
mating y, in practice it will almost inevitably also be a good basis set for y -$) 
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5. OTHER METHODS 

Of the infinity of other possible choices of the (II,}, we mention explicitly only 
one more, namely the choice 

&n(d = mn , s), m = l,..., N, (21) 

for some suitable set of points a < tl < tz < *a* < tN < b. This choice leads to 
the property 

K&n 9 4 = wm 2 4, m = l,..., N, 

a property analogous in a sense to (18), but with perhaps less clear advantages. 
From a practical point of view, this method has the disadvantage that one must 
choose (for each N) the set of points {t,}, as well as the functions {urn}. 

We have in fact carried out numerical calculations with this method, for the 
first of the examples discussed in the next section, and with the points chosen 
to be 

tm = (2m - 1)/2N, m = I,..., N. 

The numerical results (not shown in this paper) were always somewhat worse 
than for either method 1 or 2, though usually not greatly so, except for values 
of X near a characteristic value, where the differences became considerable. 

Bateman’s approximation [8] to K(t, s), namely 

with 
(E-%nn = K(tm , tn), m, n = l,..., N, 

can be obtained formally from (5) by using the above choice (21) for the (II,}, and 
by taking the {u,,} to be delta functions, u,(t) = 8(t - t,J. The Bateman kernel 
is exact when either t or s coincides with one of the points tm . This property is 
formally analogous to the properties (18) and (19) of method 2, but the Bateman 
method is expected to be inferior to method 2, because the natural criterion for 
choosing the (urn} was that they should be a good basis set for approximating y, 
which the delta functions certainly are not. A common fault of the Bateman 
kernel is that it contains spurious singularities. For example, if K(t, s) has a 
discontinuity on the line t = S, then the Bateman kernel will normally have 
spurious discontinuities on the 2N lines t = t, , s = tm , n, m = l,..., N, the 
singularities at t = t, will appear in the approximate solution of the integral 
equation. 
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6. NUMERICAL EXAMPLES 

The first, and most thoroughly explored, of our two numerical examples is 

y(t) = t2 + A 1’ K(t, s) y(s) ds, O<t<l, (22) 
0 

where 

which we have considered for a wide range of values of the parameter X. 
This is a convenient example, because the exact solution is known analytically 

from the solution of the corresponding differential equation 

y”(t> + 2W) = 2, 

with boundary conditions 

Y(O) = 0, Y(l) + Y’(l) = 3. 

The characteristic values h, (i.e. the values of h for which the homogeneous 
version of (22) has a nontrivial solution) are given by A, = ,un2/2, n = 1, 2,..., 
where pn is the nth positive root of tan p = -p. The numerical values of the first 
few characteristic values are approximately 

A, = 2.05193, h, = 12.06967, 
A, = 31.82955, Ad = 61.44458,... . 

The methods of Section 2, and also the method of moments, require a choice 
for the functions {u,], the principal criterion being that the functions should be 
a good basis set for approximating y. We learn from the integral equation itself 
that y(t) necessarily vanishes at t = 0, and furthermore that y is a smooth function 
(in fact differentiable any number of times on (0, I), with bounded derivatives). 
A convenient choice for the (us is therefore 

u,(t) = P, n = 1, 2 ,..., N, 

with which choice the subspace U, is just the space of all polynomials of degree N 
that vanish at the origin. (An obvious advantage of the polynomial basis over, 
say, a trigonometric basis for this problem is that the inhomogeneous term in this 
problem is itself a polynomial, and therefore easily expressible in this basis. This 
is a point always worth considering in choosing the basis.) With this choice of 
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basis functions the various integrals that are needed (see Sect. 2) are easily evaluated 
analytically. 

In Table I we give the h = 1 results for methods 1 and 2 and the method of 
moments. Obviously, all of the approximate solutions are converging satisfactorily 
with increasing N, at each value of t. But the new methods are clearly much 
better than the method of moments, the errors being smaller by one or two factors 
of ten. The method 2 results are not shown for the largest value of N, because of 
some loss of significance through ill-conditioning. (Our general experience is 
that method 2 is less well conditioned than the other methods. Some ill-conditioning 

TABLE I 

Errors for First Example, with h = 1 

Exact Y(f) - YAW 
t solution, Method” 

u(t) N=2 N=3 N=4 N=5 N=6 

M 
0.0 0. 1 

2 

M 
0.2 0.21505 05107 1 

2 

M 
0.4 0.49247 94556 1 

2 

M 
0.6 0.81024 00873 1 

2 

M 
0.8 1.14308 05761 1 

2 

M 
1.0 1.46455 07253 1 

2 

M 
II Y - YN II 1 

2 

0. 0. 0. 
0. 0. 0. 
0. 0. 0. 

-1.7(-2) 4.q-4) 6.3(-6) 
-6.9(-4) 6.2(-6) -1.9(-7) 
-5.8(-4) 7.6(-6) 2.1(-7) 

-5.8(-3) -4.2(-4) -6.8(-5) 
--2.o(--4) -1.3(-5) -1.2(-6) 
-1.6(--4) -7.9(-6) -7.6(-7) 

1.2(-2) -1.2(-4) 8.2(-5) 
7.1(-4) -6.6(-6) 1.4(-6) 
4.8(-4) -l.l(-6) 9.7(-7) 

1.2(-2) 4.3(-4) -4.5(-5) 
7.7(-4) 7.3(-6) -2.1(-7) 
2.0( -4) 6.6(-6) -7.1(-7) 

-3.4(-2) -8.5(-4) 2.5(-4) 
1.9(-4) -3.6(-7) 6.2(-9) 

-5.O(-4) -6.9(-6) 8.8(-7) 

1.3(-2) 3.8(-4) 7.6(-5) 
5.7(-4) 7.8(-6) 9.2(-7) 
3.9(-4) 6.1(-6) 6.8(-7) 

0. 
0. 
0. 

0. 
0. 
0. 

1.6(-6) 2.7(-7) 
1.6(-8) 1.8(-g) 
8.8(-9) - 

-9.5(-7) -2.4(-7) 
-1.2(-8) -2.1(-9) 
--6.8(-g) - 

2.9(-8) 2.5(-7) 
-2.O(-9) 2.5(-9) 

2.7(-9) - 

5.q-7) -2.7(-7) 
7.8(-9) --1.4(-9) 

-9.O(-10) - 

4.2(-6) -8.3(-7) 
-4.3(-12) 2.7(- 10) 

l.O(-8) - 

1.5(-6) 2.3(-7) 
1.2(-8) 1.3(-9) 
8.9(-g) - 

@ The method of moments is labeled by M, and methods 1 and 2 by 1 and 2 respectively. The 
numbers in parentheses are the powers of 10 by which the preceding numbers are to be multiplied. 
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problems should be expected in this example, since we have used a monomial 
basis, a basis set that is notorious in this respect.) 

In the last line of the table we show also the L2 error norm for the two methods, 

= (jol [Y(t) - YN@)l’ dr)l’t 

this being a convenient characterization of the average error over the interval. 
Obviously the values of 11 y - y,,, /I are comparable in magnitude to the pointwise 
errors, and lead to the same qualitative conclusions. From now on we shall use 
this error norm to characterize the errors. 

The behavior of the integral equation (1) can change greatly as h is varied, 
and we have therefore thought it desirable to test the numerical methods over a 
range of different values of A. In Fig. 1 we show the values of jJ y - yN 11 as a 
function of N for a number of positive values of A, ranging from h = $ (which 
is much smaller than the smallest characteristic value A,) to X = 64 (which is 

x=0.25 s3 ‘. mom. 

, I\ 
I-8 

\ 

1 

\ 2 
= 

3 3 

A= 16 
--- lo"j--===-yqoy 

1 

I I I I I I I I I I I I I I I 
2 4 ‘6 2 4 6 2 4 6 2 4 6 

N 

FIG. 1. Error norms 11 y - YN /I for the first example, Eq. (22), for methods 1 and 2 and the 
method of moments, for h > 0. 
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I 
0 

* 10 
= x=-l6 

x=-i 
,?I3 

mom. 

‘. 

:“\I 
“\,1 mom. 

‘\ 
2“\ 

‘. 

loo 
iv-64 

l.~y~~~, 
\ 13 - l&-- 

I I I I I I I I I I I I I I I 
2 4 6 2 4 6 2 4 6 

N 

FIG. 2. Error norms /I y - yN I/ for the first example, for X < 0. 

larger than A,). Two of the values are chosen to lie close to A1 , to see what happens 
in that situation. Figure 2 shows similar results for several negative values of A. 

It is clear from these figures that all three methods behave satisfactorily as iV 
increases, though the convergence becomes rather slow for large values of I X 1. 
(The slower convergence for large values of 1 h 1 is reasonably attributed to the 
fact that the polynomial basis set is much less appropriate in this case. In the 
worst case, X = 64, the exact solution has four zeros in the interval [0, I], and 
therefore is very poorly described by a polynomial of low degree.) 

The most striking aspect of Figs. 1 and 2 is that the new methods developed 
in this paper virtually always give far smaller errors, by one or more powers of 
ten, than the method of moments; the only exceptions are where all the methods 
fail completely, such as for h = 64 with small values of N. Particularly striking 
is the comparison between method 1 and the method of moments: these two 
methods are exactly equal in difficulty, yet evidently yield results of vastly different 
quality. 

The more difficult of the new methods, method 2, is seen to give consistently 
better results than method 1, but the difference is often rather insignificant on 

581/18/1-S 



104 SLOAN, BURN, AND DATYNER 

the logarithmic scales of Figs. 1 and 2. (In the regions where the curves are close, 
the ratio between the method 1 and 2 errors is about 8.) However, for values of h 
near the characteristic value A, , it is evident that method 2 is significantly more 
reliable than method 1. 

The second of our numerical examples is the rather more difficult equation 

y(t) = t” - h I1 In 1 t - s [ y(s) ds, 
0 

(23) 

the kernel of which has logarithmic singularities on the line t = s. The exact 
solution is not known, but it is easily seen that y(t) is not analytic at t = 0 and 
t = 1, and that u’(t) is unbounded as t + 1 from below. (Of course we could have 
contrived, in the usual way, to make the exact solution a known analytic function, 
but it seems to us more pertinent to find out if the methods work when the solution 
is not simple.) 

The functions {u,} were again chosen to be polynomials, 

u,(t) = t-1, n = l,..., N, 

not because they are particularly appropriate to the problem (clearly they are not), 
but for convenience. In particular, the necessary integrals in Section 2 can then 

FIG. 3. 
method of 

2 4 6 8 IO 

N 

Error norms II y - yN /I for the second example, Eq. (23), for method 1 and the 
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be evaluated analytically, by making use of the beta function integral and its 
derivatives. 

The results for method 1 and the method of moments are shown in Fig. 3, 
for X = + 1 and X = - 1. (Method 2 was not studied for this example.) Obviously 
the convergence of both methods is much slower than in the first example, 
presumably because of the less satisfactory choice of basis functions. 

The error bars in Fig. 3 arise from an uncertainty of 0.0002 in the “exact” 
values of y(t). (The values of y used in Fig. 3 were obtained by increasing the 
values of N in method 1 until effective convergence was achieved. Then the quality 
of this result was tested by numerical integration of the right-hand side of (23), 
after suitable subtraction of the singularity at t = s, using Simpson’s rule with 
10, 20, 40,... points, again until effective convergence was achieved.) 

It is strikingly clear from Fig. 3 that method 1 is again far superior to the method 
of moments. Except for small values of iV, where neither method is useful, the 
errors in method 1 are smaller than those in the method of moments by more 
than a factor of ten, an improvement that could well make the practical difference 
between success and failure in an example of this type. 

7. CONCLUSION 

In both of the numerical examples, method 1 (the simpler of the two methods 
introduced in this paper) turns out to be far superior to the usual method of 
moments (Galerkin method) -a striking result, because the computational require- 
ments are almost identical. A partial explanation is given in Section 3. 

The theoretically preferred method 2 gives even better results in all cases where 
it has been studied, though the improvement over method 1 is often marginal. 

REFERENCES 

1. F. RIESZ AND B. SZ.-NAGY, “Functional Analysis,” Ungar, New York, 1955. 
2. I. H. SLOAN AND S. K. ADHIKARI, Nucl. P&T. A235 (1974), 352. 
3. S. K. ADHIKARI AND I. H. SLOAN, Separable operator expansions for the t-matrix, Nucl. Phys., 

to appear. 
4. L. V. KANTOROVICH AND V. I. KRYLOV, “Approximate Methods of Higher Analysis,” Noord- 

hoff, Groningen, 1958. 
5. S. G. MIKHLIN AND K. L. SMOLITSKIY, “Approximate Methods for Solution of Differential 

and Integral Equations,” Elsevier, New York, 1967. 
6. C. T. H. BAKER, “Proceedings of the Summer School on Integral Equations,” Liverpool/ 

Manchester 1973, Chap. 7, Oxford University Press, Oxford, 1974. 
7. S. G. MIKHLIN, “Variational Methods in Mathematical Physics,” Pergamon, Oxford, 1964. 
8. H. BATEMAN, Proc. Roy. Sot. (London), Ser. A 100 (1922), 441. 


